Passage III

In 3 studies, students investigated the stiffness of rectangular metal beams (see Figure 1).

Figure 1

Using the apparatus shown in Figure 2, the students deformed each beam under a variety of conditions.

Figure 2

In each trial, the beam being tested was supported at 2 points that were 0.10 m apart and equidistant from the midpoint of the beam. The beam was subjected to a *load*, W, measured in newtons (N), at the midpoint of the beam. W was provided by weights placed on the platform of the apparatus. During deformation, each beam became slightly U-shaped (see Figure 3).

side view of beam before deformation

side view of beam deformed a distance D

Figure 3

A dial on the apparatus registered the distance, D, the beam was deformed in multiples of 10^{-6} m. After D was measured, the load was removed, and the beam returned to its original shape.

The intrinsic stiffness of the metal composing a beam was represented by *Young's modulus*, E. The effect of the width and height of a beam (see Figure 1) on D was represented by the quantity I, given in m⁴.

Study 1

In Trials 1-4, students determined D for beams with different I (see Table 1). In every trial, W = 20 N and $E = 50 \times 10^9 \text{ N/m}^2$.

Table 1 our garger			
Trial	(10^{-9} m^4)	(10^{-6} m)	
1	2.0	4.2	
2	4.0 6.0	2.1	
4	8.0	1.0	

Study 2

In Trials 5-8, students determined D for beams composed of Metals S-V, respectively. Each metal had a different value of E (see Table 2). In every trial, W=20 N and $I=2.0\times10^{-9}$ m⁴.

Table 2				
Trial	Metal	(10^9 N/m^2)	(10^{-6} m)	
5	S	25	8.3 4.2	
6	T	50 75	4.2	
7	U		2.8	
8	V	100	1.4	

Study 3

In Trials 9-12, students determined D for different W (see Table 3). In every trial, $I = 2.0 \times 10^{-9} \text{ m}^4$ and $E = 50 \times 10^9 \text{ N/m}^2$.

Table 3			
Trial	W (N)	(10 ⁻⁶ m)	
9	10	2.1	
10	20	4.2	
1100	30	6.3	
12	40	8.4	

12. Which of the following diagrams of the side view of a beam correctly portrays the direction(s) of the 3 forces that the apparatus exerted on the beam?

- 13. If, in Study 3, a trial had been conducted in which W = 25 N, D would most likely have been closest to which of the following?
 - **A.** 3.1×10^{-6} m **B.** 5.2×10^{-6} m **C.** 7.3×10^{-6} m **D.** 9.4×10^{-6} m
- 14. If the amount of work done to deform a beam equaled $W \times D$, in which of the following trials was the amount of work the greatest?
 - F. Trial 2 G. Trial 4
 - H. Trial 6
 - J. Trial 8

15. The results of Study 1 are best represented by which of the following graphs?

- 16. The beam tested in Study 3 was most likely composed of which of the metals tested in Study 2?
 - Metal S G. Metal T
 - H. Metal U Metal V
- 17. Based on the results of Studies 1 and 2, for a given W, which of the following combinations of I and E would yield the stiffest beam?

	(10^{-9} m^4)	(10^9 N/m^2)
A.	3.0	30
B.	3.0	40
C.	4.0	30
D.	4.0	40