Passage VII

Consider an aqueous solution separated from pure H_2O by a membrane permeable to H_2O but impermeable to solute particles. H_2O will flow from the region of lower particle concentration (the pure H_2O) into the region of higher particle concentration (the solution). The pressure associated with this flow is the *osmotic pressure*, π , given in atmospheres (atm) by the equation

$$\pi = 0.0821 \times T \times i \times C$$

Table 1 defines the 3 variables in the equation.

Table 1		
Symbol	Definition	
T	temperature, in kelvins (K), of the solution and the pure H ₂ O	
i	number of particles (molecules or ions) formed per molecule or formula unit of a substance when it dissolves in H ₂ O	
C	concentration (moles of a substance per liter of solution; 1 mole is 6.022×10^{23} molecules or formula units)	

Table 2 lists, for 8 substances, the value of i and the molar mass (the mass of 1 mole of a substance).

Table 2			
Substance	i	Molar mass (g/mole)	
NaCl	2	58.5	
KCl	2	74.6	
HCl	2	36.6	
MgCl ₂	3	95.2	
K ₂ SO ₄	3	174.0	
Na ₂ SO ₄	3	142.0	
Glucose	1	180.0	
Lactose	1	342.0	

Figure 1 shows how π varies with C for aqueous NaCl solutions and aqueous glucose solutions at 3 temperatures.

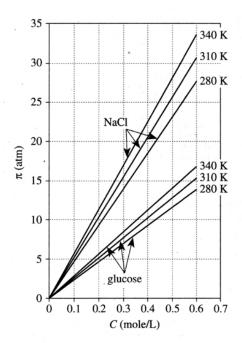


Figure 1

- **36.** Consider a solution for which C = 0.20 mole/L and $\pi = 10$ atm. Based on Figure 1, this solution is most likely an aqueous solution of:
 - F. NaCl at 280 K.
 - G. NaCl at 310 K.
 - H. glucose at 280 K.
 - J. glucose at 310 K.

- 37. Compared to the mass of 1 molecule of glucose, the mass of 1 molecule of lactose is:
 - A. smaller, because lactose has a smaller molar mass than does glucose.
 - smaller, because lactose has a larger molar mass than does glucose.
 - larger, because lactose has a smaller molar mass than does glucose.
 - D. larger, because lactose has a larger molar mass than does glucose.
- 38. How does the value of i for HCl differ from the value of i for MgCl₂, and what is the meaning of the difference? The value of i for HCl is:
 - lower, which means that each HCl dissolves in H₂O to form fewer particles than does each MgCl₂.
 - lower, which means that each HCl dissolves in H₂O to form more particles than does each MgCl₂.
 - H. higher, which means that each HCl dissolves in H₂O to form fewer particles than does each MgCl₂.
 - higher, which means that each HCl dissolves in H₂O to form more particles than does each MgCl₂.

- **39.** Suppose a 1 L solution is produced by dissolving 2 moles of KCl in H₂O. Based on the information provided, π, in atm, of this solution at 290 K can be calculated using which of the following expressions?

 - **A.** 0.0821 × 290 × 1 × 1 **B.** 0.0821 × 290 × 1 × 2 **C.** 0.0821 × 290 × 2 × 2
 - **D.** $0.0821 \times 290 \times 3 \times 2$
- 40. Suppose a new line showing how π varies for aqueous MgCl₂ solutions at 340 K were added to Figure 1. How would this new line compare to the lines shown in Figure 1 for aqueous NaCl solutions and aqueous glucose solutions at 340 K?
 - The y-intercept would remain the same, but the slope of the line would be greater.
 - The y-intercept would remain the same, but the slope of the line would be smaller.
 - The y-intercept would be greater, but the slope of the line would remain the same.
 - The y-intercept would be smaller, but the slope of the line would remain the same.