Passage V A material is a superconductor (its electrical resistance, R, is zero) if its temperature, T, is lower than its critical temperature, $T_{\rm C}$. Students measured R and T for both a sample of Material X and a sample of Material Y while each sample was cooled. They used an ohmmeter to measure R (in ohms) and a thermocouple to measure T. The thermocouple displayed the result of each measurement of T as a voltage (in millivolts, mV). Accordingly, the students plotted R versus voltage (see Figure 1). To convert voltage in mV to T in kelvins (K), they used Table 1. Figure 1 | Table 1: Voltage (mV)-Temperature (K) Conversion Chart | | | | | | | | | | | |--|---|---|--|--|--|--|--|--|--|--| | (K) | 0 | -1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 80
90
100
110
120
130
140 | 6.29*
5.90
5.52
5.16
4.81
4.46
4.11 | 6.25 [†]
5.86
5.48
5.13
4.77
4.42
4.07 | 6.21
5.83
5.44
5.09
4.74
4.39
4.04 | 6.17
5.79
5.41
5.06
4.70
4.35
4.00 | 6.13
5.75
5.37
5.02
4.67
4.32
3.97 | 6.09
5.72
5.34
4.99
4.63
4.28
3.93 | 6.05
5.68
5.30
4.95
4.60
4.25
3.90 | 6.01
5.64
5.27
4.91
4.56
4.21
3.86 | 5.97
5.60
5.23
4.88
4.53
4.18
3.83 | 5.93
5.56
5.20
4.84
4.49
4.14
3.79 | ^{*}For example, 6.29 mV converts to 80 K. Figure and table adapted from "Instruction Manual for Superconductor Demonstrations." ©1992 by Colorado Superconductor, Inc. [†]For example, 6.25 mV converts to 81 K. - 23. Based on Table 1, if the thermocouple were used to measure the temperature of a sample at 112 K, the voltage displayed would most likely be closest to which of the following? - A. 4.81 mV - **B.** 5.09 mV - C. 5.44 mV - **D.** 6.29 mV - 24. In Table 1, as voltage decreases, temperature: - F. increases only. - G. decreases only. - H. varies, but with no general trend. - J. remains constant. - 25. Based on Figure 1 and Table 1, the range of temperatures over which Material X is a superconductor is closest to which of the following? - 2 K - B. 6 K - C. D. 88 K - 176 K - **26.** Based on Figure 1 and Table 1, T_C for Material Y is most likely closest to which of the following? - 25 K 50 K 75 K 100 K G. H. - 27. Suppose that the sample of Material Y is included in an electrical circuit, as diagrammed below. Based on Figure 1 and Table 1, if the sample is kept at 81 K, will the sample generate any heat as a result of the electrical current flowing through the sample? - No, because R of the sample will equal zero. - **B.** No, because R of the sample will be greater than zero. - Yes, because R of the sample will equal zero. - **D.** Yes, because R of the sample will be greater than