Passage V

A material is a superconductor (its electrical resistance, R, is zero) if its temperature, T, is lower than its critical temperature, $T_{\rm C}$.

Students measured R and T for both a sample of Material X and a sample of Material Y while each sample was cooled. They used an ohmmeter to measure R (in ohms) and a thermocouple to measure T. The thermocouple displayed the result of each measurement of T as a voltage (in millivolts, mV). Accordingly, the students plotted R versus voltage (see Figure 1). To convert voltage in mV to T in kelvins (K), they used Table 1.

Figure 1

Table 1: Voltage (mV)-Temperature (K) Conversion Chart										
(K)	0	-1	2	3	4	5	6	7	8	9
80 90 100 110 120 130 140	6.29* 5.90 5.52 5.16 4.81 4.46 4.11	6.25 [†] 5.86 5.48 5.13 4.77 4.42 4.07	6.21 5.83 5.44 5.09 4.74 4.39 4.04	6.17 5.79 5.41 5.06 4.70 4.35 4.00	6.13 5.75 5.37 5.02 4.67 4.32 3.97	6.09 5.72 5.34 4.99 4.63 4.28 3.93	6.05 5.68 5.30 4.95 4.60 4.25 3.90	6.01 5.64 5.27 4.91 4.56 4.21 3.86	5.97 5.60 5.23 4.88 4.53 4.18 3.83	5.93 5.56 5.20 4.84 4.49 4.14 3.79

^{*}For example, 6.29 mV converts to 80 K.

Figure and table adapted from "Instruction Manual for Superconductor Demonstrations." ©1992 by Colorado Superconductor, Inc.

[†]For example, 6.25 mV converts to 81 K.

- 23. Based on Table 1, if the thermocouple were used to measure the temperature of a sample at 112 K, the voltage displayed would most likely be closest to which of the following?
 - A. 4.81 mV
 - **B.** 5.09 mV
 - C. 5.44 mV
 - **D.** 6.29 mV
- 24. In Table 1, as voltage decreases, temperature:
 - F. increases only.
 - G. decreases only.
 - H. varies, but with no general trend.
 - J. remains constant.
- 25. Based on Figure 1 and Table 1, the range of temperatures over which Material X is a superconductor is closest to which of the following?
 - 2 K
 - B. 6 K
 - C. D. 88 K
 - 176 K

- **26.** Based on Figure 1 and Table 1, T_C for Material Y is most likely closest to which of the following?

 - 25 K 50 K 75 K 100 K G. H.
- 27. Suppose that the sample of Material Y is included in an electrical circuit, as diagrammed below.

Based on Figure 1 and Table 1, if the sample is kept at 81 K, will the sample generate any heat as a result of the electrical current flowing through the sample?

- No, because R of the sample will equal zero.
- **B.** No, because R of the sample will be greater than zero.
- Yes, because R of the sample will equal zero.
- **D.** Yes, because R of the sample will be greater than